
   
 

   
 

NASA TechRise: Basic Sensor How-To 
As you brainstorm your ideas, you can use this “Basic Sensor How-To" to help you think through 

the steps you might take to begin building a payload.  
 

Let's say we want to record temperature and humidity during a weather balloon flight and use that 
data to create graphs. What is the basic hardware and software necessary to do that? 

 
Hardware 
To collect data, we need a sensor that responds to the conditions we want record (temperature & 
humidity in this case), a microcontroller to read the sensor, and a storage device to store the data. 
 
Microcontroller with SD card reader/writer 
Some microcontrollers have built-in SD card readers.  

 
 

This simple datalogger microcontroller is a 
useable choice. 

Adafruit Feather M0 Adalogger 
https://www.adafruit.com/product/279
6 

 
 
 
 
 

Temperature and Humidity Sensor 
Any simple temperature and humidity sensor should work... 

 
 

This one is low power and uses 12C, so 
only 4 wires are needed to connect to an 
MCU. AM2320 Digital Temperature and 
Humidity Sensor 
https://www.adafruit.com/product/3721 



   
 

   
 

 
Additional Hardware 

• Half sized 

breadboard 

• Jumper wires 

• 2X 10k ohm resistors (pull-up for I2C) 
 

Hardware Setup 
*Note: The microcontroller board (Adafruit Feather M0 Adalogger) used in this example 
does require soldering. For a complete guide on how to setup a board like this go here: 
https://learn.adafruit.com/adafruit-feather-m0-adalogger/assembly 

 
Assumptions: 

1. The Feather microcontroller has pins soldered to its underside 

2. We will use the USB port on the microcontroller as the primary power 
supply. This will provide 5V to the microcontroller. 

3. We will use the 3V pin on the microcontroller to power the sensor 

4. The sensor requires two pull-up resistors connected to its SDA and SCL pins (pins 2 and 4) 
 
Microcontroller pin-out 
Microcontrollers use metal pins to connect to power, ground, and other devices. Each board will 
have a set of pin "names" that are either unique or based on a standard (like Arduino UNO). For 
this simple experiment we will need to connect to a sensor that uses 4 pins labeled 3V, GND, 



   
 

   
 

SCL and SDA. For a complete list and descriptions of the pins on the microcontroller in this 
lesson go here: 

https://learn.adafruit.com/adafruit-feather-m0-adalogger/pinouts 
 
 
Sensor pin-out 
Every electrical sensor will have pins that connect back to a microcontroller. The "names" of 
these pins are known as the pin-out. Some sensors might be simple on/off devices like motion 
sensors (digital) others might create a variable voltage like light sensitive diodes or resistors 
(analog) and still others will use a communications protocol (like I2C or SPI). The sensor in this 
example is I2C which is a universal 2-wire serial interface. The pins on our devices are labeled 
1-4 from left to right and the "names" of those pins, in order, are VCC (power), SDA (Serial- 
data), GND (ground), and SCL (Serial-clock). For an in depth look at how I2C works, check out 
this tutorial from Sparkfun.com: https://learn.sparkfun.com/tutorials/i2c/all. For a complete 
guide on the sensor in this experiment go here: https://learn.adafruit.com/adafruit-am2320- 
temperature-humidity-i2c-sensor 

 
 

 
From left to right: VDD (voltage), SDA (serial data), GND (ground), SCL (serial clock) 

 



   
 

   
 

Breadboard wiring 
 
Step 1: Press the microcontroller into a breadboard with the USB port on the edge of the board 
and use a red wire to connect the pin labeled 3V to the red rail on the bottom and a blue wire to 
connect the pin labeled GND to the blue rail on the bottom. 

 
 
 
 
 
 
 
 
 
 
 

 
Step 2: Connect the sensor on the board as shown with the front grid facing the bottom of the 
breadboard and connect a red wire to the 1st pin on the left of the sensor and the red power rail at 
the bottom. Then connect a blue wire to the 3rd pin from the left to the blue ground rail on the 
bottom of the breadboard. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 3: Connect a 10k ohm resistor to the 2nd pin from the left on the sensor to the red power rail 
on the bottom and a second 10k ohm resistor to the 4th pin from the left also to the bottom red 
power rail. These are called pull-up resistors. 
 
 
 
 
 
 



   
 

   
 

Step 4: Connect a blue wire from the SDA pin on the top right of the microcontroller to the 2nd 
pin from the left on the sensor. Then connect a yellow wire from the SCL pin, 2nd from the top 
right on the microcontroller to the 4th pin from the left on the sensor. This is the data and clock 
connections for the sensor. 
 
Step 5: Connect the USB cord to the microcontroller at the micro-USB port, and then connect to 
your computer for power supply.  

 

Step 6: Make sure there is a micro-SD card (8gb or less) inserted in the SD card slot on the 
microcontroller and that is it! That is everything we need to program this microcontroller to read 
data from our I2C temperature and humidity sensor and save it to the SD card.  

 
Software 
To read our temperature and humidity sensor and save data we will need to write a bit of code         on 
the microcontroller. This example will use CircuitPython to do this. Software setup on our 
microcontroller is easy. 

 
CircuitPython setup 
You will need to download a .uf2 file from the 
CircuitPython website here: 
https://circuitpython.org/board/feather_m0_adalogger/ 

Use the latest release .uf2 file on the top right. 

 
Once it is downloaded, plug the microcontroller into a 
micro USB cable and plug the other end into your 
computer. 
 
Double click the small reset button on the board. A 
new drive called FEATHERBOOT will appear on your 
computer. 

Simply drag the .uf2 file you downloaded into that 
drive. The microcontroller will restart and a new drive 
called CIRCUITPY will appear.

Reset Button 



   
 

   
 

Libraries 
Next you will need to download the CircuitPython library bundle here: 
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210921/adafruit- 
circuitpython-bundle-7.x-mpy-20210921.zip and extract the zip file onto your computer. 

Copy the following .mpy files from the folder /lib/ in the zip file to the /lib folder on 
the CIRCUITPY drive. 

• adafruit_am2320.mpy 

• adafruit_sdcard.mpy 

• adafruit_bus_device.mpy 

Code 
Now you can open Mu editor or your python editor of choice and open the code.py file from the 
CIRCUITPY drive. 
 
Imports 

We will need to import several modules at the top of our program. 

The modules we need are listed here: 

 

Time will give us access to time.sleep() so we can pause the program, and time.monotonic() so 
we can keep track of the passage of time. Please note that the time is time elapsed in seconds. 
Board allows us to access the names of the pins on the board. Busio will give us access to the 
I2C and SPI devices we need for the sensor and sd card reader. adafruit_am2320 is the library 
for our sensor and adafruit_sdcard is the library for the sd card reader. Storage will allow us to 
access the sd card's file system, open a file, and save data to that file. Digitalio will allow us to 
set a CS pin for the SPI bus and a red led to blink when we are writing data to file on the sd card. 

 

import time 

import board 

import busio 

import adafruit_am2320 

import adafruit_sdcard 

import storage 

from digitalio import DigitalInOut 



   
 

   
 

 
Setup 
Next we will initialize the I2C bus that the sensor is connected to and use the I2C object to 
initialize the sensor itself: 

 

 

Then we will initialize the SPI bus that the SD card reader is connected to and create the digital 
CS (chip select) pin for the card reader as well. (On the Feather M0 Adalogger the CS pin is 

board.D5): 
 

 

Next, we can initialize the the sd card reader itself using the SPI object and CS pin we defined. 
Then we will mount the filesystem of the storage device: 

 

 

Finally, we can set the onboard D13 pin as an output so we can flash the onboard led when 
writing to the SD card: 

 

 

Main Loop 
With setup completed we can start the main loop and add the code we need to read the 
temperature and humidity, print it out to serial, and save it to the SD card. 

 

# initialize the I2c bus 

i2c = busio.I2C(board.SCL, board.SDA) 

# initialize the AM2320 sensor 

temp_hum = adafruit_am2320.AM2320(i2c) 

 

# initialize SPI bus and set CS pin 

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO) 

# sd card reader CS pin on Feather M0 Adalogger is connected to board.D4 

cs = DigitalInOut(board.D4) 

 

# initialize sdcard and storage 

sdcard = adafruit_sdcard.SDCard(spi, cs) 

vfs = storage.VfsFat(sdcard) 

# mount the storage device 

storage.mount(vfs, "/sd") 

 

# set the onboard red LED as an output so we can flash it when writing data 

led = DigitalInOut(board.D13) 

led.switch_to_output() 



   
 

   
 

At the top of the loop we can save the current time in a variable called this_time so we can later 
use it to put a time stamp on our data: 
 

 Next, we can easily read the temperature and humidity into variables named t and h respectively, 
and print all three values to serial: 

 
 
 

 
 
 

Then with a few lines of code we can turn on the red led to indicate that data is being written, 
and format the data into a string to write to the SD card: 
(for more on how Python's 'string'.format() function works, check out this tutorial:   
https://www.w3schools.com/python/ref_string_format.asp) 
 

  
 
 

Finally, we will open a file called data_log.txt (don't worry about creating it ahead of time, if the 
file does not exist, the open command will create it automatically). The open command opens 
the file from the SD card so we can write our string into the file, turn off the led, then sleep for a 
second before the code will loop and do this all over again as long as the controller is powered 
on:

print("Temp is:", t) 

print("Humidity is:", h) 

 

# start the main loop 

while True: 

# read time from time.monotonic() and save it for this loop 

this_time = time.monotonic() 

 

# read the sensor values and print them into the serial monitor t 

= temp_hum.temperature 

h = temp_hum.relative_humidity 

print("Time is:", this_time) 

 

# turn on the red led to indicate that data is being written to the sd card 

led.value = True 

print("writing data to the SD Card...", '\n') 

# format a data string as a list of comma separated values 

data_string = '{:n},{:-},{:n}\n'.format(this_time, t, h) 



   
 

   
 

 
 

 

And that is all that is necessary to save data to a txt file in CircuitPython. 

The full code.py file is here: 

 

# save the data to the data_log.txt file 

with open("/sd/data_log.txt", "a") as dl: 

dl.write(data_string) 

dl.flush() 

# turn off the red led until next time 

led.value = False 

# sleep for 1s before taking another reading 

time.sleep(1) 

# loop repeats 

 

import time 

import board 

import busio 

import adafruit_am2320 

import adafruit_sdcard 

import storage 
from digitalio import DigitalInOut 

 
# initialize the I2c bus 

i2c = busio.I2C(board.SCL, board.SDA) 

# initialize the AM2320 sensor 

temp_hum = adafruit_am2320.AM2320(i2c) 



   
 

   
 

 
 

Output 
So, what does this program give us? Essentially it creates lines of text in a file called data_log.txt 
that start with a time stamp followed by a comma with a temperature value followed by a comma 
and then a relative humidity value. This is commonly known as a CSV or Comma Separated 
Value format and it is a simple and typical way that data is stored so it can be converted into a 
spread sheet. 

In order for us to use the data we have stored we only need to add one thing to our data_log.txt 
file: a header. A header is just a set of labels of each value in each line of comma separated 

# initialize SPI bus and set CS pin 

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO) 

# sd card reader CS pin on Feather M0 Adalogger is connected to board.D4 

cs = DigitalInOut(board.D4) 

 
# initialize sdcard and storage 

sdcard = adafruit_sdcard.SDCard(spi, cs) 

vfs = storage.VfsFat(sdcard) 

# mount the storage device 

storage.mount(vfs, "/sd") 

 
# set the onboard red LED as an output so we can flash it when writing data 

led = DigitalInOut(board.D13) 
led.switch_to_output() 

 
# start the main loop 

while True: 

# read time from time.monotonic() and save it for this loop 

this_time = time.monotonic() 

 
# read the sensor values and print them into the serial monitor 

t = temp_hum.temperature 

h = temp_hum.relative_humidity 

print("Time is:", this_time) 

print("Temp is:", t) 

print("Humidity is:", h) 

 
# turn on the red led to indicate that data is being written to the sd card 

led.value = True 
print("writing data to the SD Card...", '\n') 

# format a data string as a list of comma separated values 

data_string = '{:n},{:-},{:n}\n'.format(this_time, t, h) 

 
# save the data to the data_log.txt file 

with open("/sd/data_log.txt", "a") as dl: 

dl.write(data_string) 

dl.flush() 

# turn off the red led until next time 

led.value = False 

# sleep for 1s before taking another reading 

time.sleep(1) 

# loop repeats 



   
 

   
 

data. 

If we open data_log.txt it will something like this: 
 

 

Each line is one of the data_string lines that we created in our program. They are all the same in 
that each one is Time,Temperature,Humidity. So, to create a csv file all we need to do is add a 
line to the top with those labels like this: 

 

 

1905.63,28.3,39.6 

1906.73,28.3,39.8 

1907.8,27.5,39.9 

1908.86,26.2,39.6 

1909.93,26,39.6 

1911,26.8,39.6 

1912.06,26.2,39.3 

1913.13,26.1,38.9 

1914.19,26.4,38.8 

1915.26,28.4,39 

1916.33,28.4,39.4 

1917.39,28.3,39.5 

1918.46,28.3,39.8 

1919.52,26.8,39.9 

1920.59,28.3,40.1 

1921.65,28.3,40.1 

1922.72,28.5,40.1 

1923.79,28.3,40.1 

1924.85,26.8,39.9 

1925.92,26.2,39.8 

... 

 

Time,Temperature,Humidity 

1905.63,28.3,39.6 

1906.73,28.3,39.8 

1907.8,27.5,39.9 

1908.86,26.2,39.6 

1909.93,26,39.6 

1911,26.8,39.6 

1912.06,26.2,39.3 

1913.13,26.1,38.9 

1914.19,26.4,38.8 

1915.26,28.4,39 

1916.33,28.4,39.4 

1917.39,28.3,39.5 

1918.46,28.3,39.8 

1919.52,26.8,39.9 

1920.59,28.3,40.1 

1921.65,28.3,40.1 

1922.72,28.5,40.1 

1923.79,28.3,40.1 

1924.85,26.8,39.9 

1925.92,26.2,39.8 

... 



   
 

   
 

Then we can save the file and rename it to data_log.csv 

We can then import that csv file into google sheets or open it in Excel and we will see neatly 
formatted data that can be turned into graphs and charts! 

 


